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1. INTRODUCTION.

In this article, we consider some very elementary but important problems
which arise from modern uses of the computer in statistics, particularly in
connection with testing goodness-of-fit. These involve (a) estimating
percentage points; (b) simulating a Gaussian process; and (c) approximating

the inverse of a covariance matrix of order statistiscs.

2. ESTIMATING PERCENTAGE POINTS.

The first problem is that of estimating percentage points of an
intractable distrivution. For example, the distributions of many
goodness-of-fit statistics are very difficult to find, particularly for a
finite sample, and particularly if parameters are estimated. The standard
procedure is to simulate the situation considered, and calculate the
statistic, say S; then repeat this n times to obtain the Monte Carlo
distribution of S. The p-th percentile, for example, would be estimated by
the [np]+l order statistic of the S-sample. Some years ago, Schafer (1974)
suggested that it would be better to take, say, ¢ samples of m=n/c Monte
Carlo values, and take the average of the ¢ estimates of the p-th
percentile as the overall estimate; thus if Si(k) denotes the k-th order
statistic of the i-th subsample, the estimate would be given by z§~1 Si(k)/c
where k = [mp]+l. Schafer’'s suggestion was investigated by two colleagues
and myself (Juritz, Juritz, and Stephens, 1983); we showed that the bias in
the estimate is less for the estimate from one full sample than it is for the
estimate from the mean of ¢ subsamples, except in somewhat contrived cases,
while the confidence intervals for the estimates were approximately the same

size. This work was subsequently confirmed by Dudewicz and van der Meulen




(1984), who illustrated their work on a statistic they had introduced for

testing uniformity. Zelterman (1987) also discusses this problem.

Bias In estimates of percentage points.

Of course, for certain distributions, exact values of m the expected
values of X(k)’ will be known, and the bias in the Monte Carlo estimate can

be estimated. Thus, for the normal distribution, for a sample of size 100,

the 95% point will be estimated by X which has expected value 1.6872,

[96])°
to compare with the true percentile value of 1.6449. In Juritz, Juritz, and
Stephens (1983) we published a table showihg the bias for the 95% and 97.5%
points for the standard normal distribution, and for various sample sizes.
Table 1 below is a similar table for the standard exponential distribution
with mean 1. The values of r and s are those for which the interval
I = (X(r)’x(s)) is a 95% confidence interval for the true percentile. These
are found to high accuracy as follows. Let §p be the percentile at level
p, let w = (np(l-p))ln, and let 27 denote the (100y) percentile of the
standard normal distribution. Then the choice r = -w 21 + np + % and
s = W 27 + np + %, where r = l-a/2, gives a (l-a) 100% confidence interval
for fp.
The approximate confidence interval length is obtained from a formula
in Juritz, Juritz and Stephens (1983). It is clear that ~*e bias diminishes
with sample size; since the mean of several estimates will give the same

bias, it is better to use one larger sample for a point estimate.

Confidence intervals for percentage points.

Although in practice point estimates of percentage points are nearly
always all that are given when tables are produced, it is useful to examine
confidence intervals for the points, as a guide to their accuracy. In Table

2 the multi-sample and single-sample confidcncs intervals are compared for




the 95% point of a standard normal distribution, with true value 1.645. The
intervals are obtained from 6 Monte Carlo tests, for each of two comparisons.
In the left-hand half of Table 2 the comparison is between ¢ = 10 runs each
of size m = 100, (the multi-sample case) and one run of size 1000 (the
single-sample case). In the right hand half of the Table, the multi-sample

case has ¢ = 10 and m = 500, to compare with the single-sample n = 5000.

Consider the left-hand part of Table 2. For each of the 6 tests, in the
multi-sample case, the estimate is ip, the mean of the 10 wvalues of Xp,
where X is X with £ = 96. The standard deviation ¢ of X is

P (2) P (£
0.210, found from the formula in David (1970, p. 65). This is to be compared
with S, the standard deviation of the 10 values of X(i)' For each test,

the 95% confidence limits for fp have been found, and the length Im of

the confidence interval recorded.

In the single-sample case, the estimate of fp - X(l) with £ = 951.
For each test, the confidence limits have been found from X(r) and X(s)’

withh r,s as given above, and the length IS recorded.

From the top half of the table, it can be seen that the experimental
values S cluster around the theoretical value ap = 0.210. More
importantly, the confidence intervals from the top and bottom parts of the
table are approximately the same, as was shown by Juritz, Juritz and Stephens
(1983), but the bias in the one large run is much less than in the
multi-sample case. These conclusions are supported by the right-hand half of
the table, where, in the top part, £ = 476 and in the bottom part, Xp = X(E)
with £ = 4751. Thus, the studies demonstrate conclusively the advantage of
the single sample over the multi-sample method. Dudewicz and van der Meulen

(1984) discuss confidence intervals further.




Estimates obtained from approximations using moments.

We now turn to another idea; would it perhaps be better to approximate
percentiles by calculating the sample moments from the 1000 (say) values in
the large Monte Carlo run, and fitting a suitable curve to the moments to
approximate the distribution? Several curve-fitting families are useful for
such a purpose, especially when, as for many statistics, the distribution
required can be expected to be smooth. For many goodness-of-fit statistics,
the values are usually required in the longer tail (usually the upper
tail}; for such purposes, Pearson curves using 4 moments to make the fit have
been found to be very useful. It should be emphasized that this has been the
case when theoretical (that is, exact) moments could be calculated. Here we
propose to experiment with sample moments, based on large samples. When
also, as often happens, the lower end point of the distribution is known
(often it is zero), a 3-moment Pearson curve fit can be tried, or a 3-moment
fit of the form (cxi)k. Since higher sample moments have notoriously high
sampling variability, there is something to be said for approximations using

only 3 moments.

We have recently explored the curve-fitting possibility, as opposed to
direct estimation of the percentile from the Monte Carlo sample, by again

taking samples from distributions for which the exact percentiles are known.

Example 1. The Weibull distribution. The first illustration is for a

variable x which has a Weibull distribution with shape parameter 2, that

is, x2 has the standard exponential distribution. Thus, the exact value of
£p - [-log(l-p)lln. The steps in the curve-fitting technique are:

(a) Take a sample of size n (say 1000) from the Weibull distribution, and
estimate, say Ep by X(k)' where k = [np]+l.

(b) Also, calculate the first four sample moments M;, r=1,...,4, where




M - zx’i"/n.
(c) Fit either a 4-moment or a 3-moment Pearson curve (knowing the lower end
of the distribution is zero) and find the estimate Yp (4-moment fit) or Zp
(3-moment fit) of fp.
(d) Repeat steps (a), (b) and (c) 50 times, to obtain 50 estimates by each
method.
(e) Calculate the average, the variance, and the mean square error (MSE) of
the 50 estimates; from the average and the known value, we can estimate the
bias.

The experiment can be repeated for different sample sizes; we used
n = 100, 200, 500 and 1000. These sample sizes are small compared with those
commonly used in Monte Carlo studies, but the trend of the results can easily

be seen.

Table 3 gives a comparison of points all along the distribution, for
both Pearson curve fits, for n = 100 and n = 1000. Type 1 refers to the

4-moment fit, and Type 2 to the 3-moment-and-lower-end-point fit.

Comments on Table 3.

(a) The Pearson curve fits often give somewhat greater bias to the
estimate, but there is a smaller variance, so that the MSE of the Pearson
curve estimate is better than for the Monte Carlo estimate.

(b) As expected, the 3-moment fit does better in the lower tail; but it
is only very slightly worse in the upper tail; the marginal diference
suggests that the 3-moment fit is to be preferred.

(¢) There is a marked improvement in MSE as n gets larger in both
methods, as one would expect; however, the relative sizes of MSE for Pearson
curve fits compared to straight Monte Carlo estimation are still somewhat

smaller as n increases.




Many goodness-of-fit statistics have asymptotic distributions which are
sums of weighted chi-squares (see, e.g., Stephens, 1976, 1977, 1979), so our
next example is a comparison for such a distribution. Statistic X has the
distribution X = .3z1 + .222 + .223 + .124 + .1z5 + .126, where =z are
independent xi variables. Table 4 gives a comparison of Monte Carlo and
Pearson curve points as before, and again Pearson curves perform well in

estimating points, measured by the MSE.

Implications for the bootstrap.

There are some interesting possible implications from this result. The
bootstrap is now a very popular method for deducing properties of a
statistic; the statistic is calculated many times over, by resampling from
one sample. In its simplest form, the empirical distribution function (EDF)
of the sample is used to estimate the population distribution and samples are
then drawn from the estimate. It might, in some circumstances, be better to
approximate the parent population by a smooth curve, such as a Pearson curve,
fitted to the sample moments, and then to draw samples from the Pearson curve
distribution when estimating properties of the relevant statistic by Monte

Carlo methods.

3. SIMULATION OF A GAUSSIAN PROCESS

It is extremely useful, when finding percentage points for test
statistics by Monte Carlo, to calculate the asymptotic points, instead of
estimating them as described at the end of the previous section; then when
the percentage points at level p are plotted against 1l/n or 1//n, the
curve is "anchored" at 1/n=0. If the curve can then be drawn with
confidence, one can deduce percentage points for quite large samples without

incurring the expense of large-sample Monte Carlo studies. Many




goodness-of-fit statistics are functionals of a process which is
asymptotically a Gaussian process; such a process, based on the EDF, is often
tied down at 0 and at 1, and is referred to as a Browniam bridge. Thus we
wish to simulate a Brownian bridge, a Gaussian process 2Z(t) with Z(0) =0
and Z(l) = 0, and with known mean (often zero) and known covariance p(s,t).
For example, the Kolmogorov statistic D 1is the supremum of Z(t), and the

Cramer-von Mises statistic W2 is fé Zz(t)dt.

Monte Carlo simulation of the process Z(t) 1is difficult, and leads to
further difficulties in finding the asymptotic distribution of D or W2.

Of necessity, on a computer, Z(t) must be discretized. One way to construct

a discrete approximation to Z(t) 1is as follows:

(a) Choose values tl’t2""’tk equally spaced between O0,1.
(b) Generate u;, a standard normal variate, at ti' i=1,...,k. Let
u’ = vector (ul,uz,...,uk).

(c) Create V, a k X k matrix with entries Vij - p(ti’tj)' where p(s,t)

is the covariance function of the Gaussian process Z(t). Suppose W 1is the

1/2

square root matrix of V, that is, W =1V Since V 1is positive definite

this is easily obtained. Suppose V = P A P’ where P 1is orthogonal and &

is diagonal, with elements on the main diagonal equal to Al,xz,...,xk. Then
* *

W=PA P', where A 1is diagonal with elements /Ai, i=1,...,k.

(d) Let 2z’ be vector (21'22""’zk)’ given by 2z = Wu.

(e) Then let i(ti), the estimate of Z(t), be z. The mean E(z) = 0, and
the covariance E(zz') = E(Wuu'W’') = V., Thus the covariance

E(Z(ti)ﬁ(tj) - p(ti'tj) and the values i(ti), i=1,...,k give a discrete
k-variate approximation to the continuous Z(t). Note also that there can be

other matrices W such that WW’' = V, so that various approximations are

possible,.




Suppose the number of points k 1s called the order of the

approximation.

Even when an approximation to Z(t) has been created, there are clearly
furth.r approximations involved in calculating D or W2. The above
procedure must be repeated n times, say, to find the distribution of the
statistics. One might then suppose that the percentage points of the
asymptotic distribution of, say D, will be found as the limit of the
smoothed Monte Carlo values plotted against 1/k or 1/Yk, as k becomes
larger. Unfortunately as k becomes larger, the manipulation of the k x k
matrices V and V'’ becomes increasingly prone to numerical errors.
Chandra, Singpurwalla and Stephens (1981), carried out this procedure to
obtain points D for use in testing for a Weibull distribution with unknown
parameters, and found that as k became larger so that m = 1/k > 0, the
plot of a typical percentile of D against m was not monotonic. In the
end, it then becomes difficult if not impossible to extrapolate to get
asymptotic percentage points.

Another method exists of constructing an approximation to the process

Z(t). Since p(s,t) 1is positive semi-definite, one can proceed as follows.

(a) Solve the integral equation
1
£,(s) = A, f p(s, OF, ()dt
0

for eigenvalues Ai and eigenfunctions fi(t)'

(b) Let ul,uz,...,uk be a set of k independent standard normal variables.
k
(c¢) Let Zk(t) - iElfi(t)ui//li. Then as k 2 =, Zk(t) tends to 2Z(t), say;

Z(t) 1is a Gaussian process with mean 0 and covariance

a
;(s,t) - 3 fi(s)fi(t)/,\i and by well-known properties of integral
i=1

10




equations,this is equal to p(s,t), the kernel of the equation in (a). Thus
zk(t) can be regarded as a k-th order approximation to Z(t). Here the
approximation arises because in real calculations the sum must be terminated
at a finite W then the zk(t) can be calculated at any point in the
interval (0,1). Once a realization has been made by the choice of u;, the
value of D or w2 can be found accurately. This approximation appears,
therefore, to have some advantage: the difficulties arise in calculating the
fi(t) and the Ai. It would be interesting to see this technique explored
further: a good problem on which to test it would be that of finding the
distribution of D or W2 when parameters in the tested distribution are
fully specified: then the distributions of D and W2 are both exactly
known. If the technique is successful, it could be used to find the
distribution of D for cases where parameters are unknown. The accuracy can
then be tested by finding the points for Wz, and comparing with the exact
points, which are known for this statistic; these points are given, for many
distributions, in Stephens (1986a). To find the distribution of D, the
Kolmogorov statistic, in cases where parameters are unknown is a problem of
considerable interest, since D 1is a well-known statisfic for testing fit;
although in fact it is often much less powerful than Wz or the related

Anderson-Darling statistic A2 (see, for example, Stephens 1974, 1986a).

In the above discussion we referred to the method of estimating
asymptotic points of a distribution, as a parameter (k above) tends to
infinity, by plotting points for finite k against 1/k or 1//k, and
extrapolating a curve through these points to 1l/k = 0. How this
extrapolation should be done is itself a problem. It often arises when
asymptotic points (as sample size n tends to infinity) are required for

making tables, say, and are to be obtained by extrapolating from Monte Carlo

11




results for finite samples. Suppose Monte Carlo experiments have given
percentage points estimates épn for level p and sample size n. It is
valuable to plot épn against 1/n, say, and then an extrapolation to

l/n = 0 should give an estimate of the asymptotic point. However, how
should this be done? It may even be known that the value fpn can be
«-pressed as gpn -a +apm+ a2m2 + a3m3,..., where m=1/n or 1//n. The
problem is then how best to estimate a, from estimates épn? We raise the
question here because this appears to be an important practical problem in
preparing tables of points, one which appears to need further examination.
Knowledge of the values of ay.ay, ... above would also be helpful to derive
modified forms of test statistics, for example, of D or W™, such as are
used in some tables in Stephens (1986a). Such forms have the merit of

drastically reducing the size of tables, and of making computerization of

tables much easier.

4. APPROXIMATING THE INVERSE OF A COVARIANCE
MATRIX OF ORDER STATISTICS

For some techniques of testing fit, based ultimately on the idea of
probability plots, one needs V-l, the inverse of V, where V 1is the
covariance matrix of the order statistics X(l),X(z),...,X(n) of a sample
from a completely specified distribution. For a review of such tests see
Stephens (1986b). The most notable example of the use of V~1 is with the
Shapiro-Wilk test for normality, where the order statistics come from the

normal distribution wich mean 0 and variance 1.

When X has the uniform distribution with limts 0 and 1, the covariance
matrix Q with entries qij - covariance(x(i),x(j)) is given by
qij = {i/(n+1)}(1-j/(n+t1l))/(n+2), 1 =1 <= j £ n. The other entries, for
i > j, are obtained from the symmetry of Q. More generally, if X has

12




continuous density f(x), and if m, = E(X(i)), the covariance matrix V

with entries v = covariance (X(i)’x(j)) has the approximation, for large

1j

n, vij = qij/(f(mi)f(mj))‘ (hlom, 1962). The inverse of cQ, where c is

(n+l1)(n+2), is the matrix M given below. It then follows that V.1 can be

approximated by ¢ DMD, where D 1is the diagonal matrix, and M 1is the

tri-diagonal matrix:

D~ | fem) M=|2 -1 0
f(mz) -1 2 -1
1 2 -
! 1 2
e,
0 12|

M can also be written as M=NN' where N 1is lower triangular. In this
way, individual entries vl oof v can be approximated by easy formulas

whose accuracy increases with n. However, for small n, this approximation

is :ot accurate enough for many practical uses.

For the normal case, Davis and Stephens (1977) used various identities
to give a good approximation to V , and this can be inverted to give v
Can similar identities be used to give accurate approximations to V for
other distributions, so that V can then be inverted to give V’
accurately? Even if such identities were available, this technique seems a
rather indirect way to approximate V'l; can an accurate approximation for
V'1 be found more directly? These are useful questions to answer not only

in connection with tests of fit, but also for estimating parameters using

linear combinations of < '~r statistics.

13
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Table 1

Expected values of order statistics from the exponential distribution,
used in estimates and confidence intervals for Ep.

P = .95; True fp = 2.9957

bias Ls:Exact
X Expect-Expected
4 ed C.I.
n k m 10 r m s m C.I. Length

length (approx.)

100 96 3.1040 1083 92 2.4695 100 5.1874 2.718 1.802
400 381  3.0222 265 372 2.6428 390 3.6410 .998  .866
500 476  3.0169 212 466 2.6746 486  3.5413  .867  .772
1000 951 3.0063 106 937 2.7572 965 3.3387  .582  .543
2000 1901  3.0010 53 1882 2.8262 1920 3.2129  .387  .383
5000 4751 2.9978 21 4721 2.8843 4781  3.1259  .242  .242
100C0 9501  2.9968 11 9458 2.9142 9544 3.0868 .173  .171
100000 95001  2.9958 1 94866 2.9692 95136 3.0232 .054  .054
p = .975; True £ = 3.6889
p
100 98 3.6874 -15 95  2.9040 . - - -
400 391 3.7410 521 385 3.2517 397 4.7366 1.485 1.221
500 488 3.6896 7 481 3.2451 495 4.5095 1.264 1.093
1000 976 3.7095 206 966 3.3673 986 4.2339 .867  .773
2000 1951 3.6992 103 1937 3.4501 1965 4.0316  .582  .S547
5000 4876 3.6930 41 4854  3.5303 4898 3.8874  .357  .346
10000 9751 3.6909 20 9720 3.5738 9782 3.8236 .250  .248
100000 97501 3.6891 2 97404 3.6510 97598 3.7287 .078  .077
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Table 3

Comparison of estimates of percentage points obtained from (a) direct Monte
Carlo estimates and (b) Pearson curve fits. The true distribution is Weibull
with shape parameter 2. The results are based on 50 Monte Carlo runs, each
with sample size n = 100 or n = 1000. The alpha-levels are measured from
the lower tail.

Part 1. n = 100.

Monte Carlo Pearson Curve Type 1 Pearson Curve Type 2

Alpha level = 0.10 Exact Perc. Pt. = 0.324593

A 0.33730 0.32783 0.32510
\' 0.00363 0.00221 0.00218
B 0.01271 0.00323 0.00050
M 0.00379 0.00223 0.00218
Alpha level = 0.50 Exact Perc. Pt. = 0.832555
A 0.82924 0.81905 0.82088
\Y 0.00411 0.00328 0.00307
B -0.00331 -0.01350 0.01167
M 0.00412 0.00346 0.00320
Alpha level = 0.90  Exact Perc. Pt. = 1.517427
A 1.52954 1.50708 1.50560
v 0.01196 0.00777 0.00675
B 0.01211 -0.01035 -0.01182
M 0.01211 0.00788 0.00689
Alpha level = 0.99 Exact Perc. Pt. = 2.145966
A 2.21615 2.07182 2.07348
v 0.05308 0.02907 0.03337
B 0.07018 -0.07415 -0.07248
M 0.05801 0.03457 0.03862
Part 2. n = 1000.

Monte Carlo Pearson Curve Type 1 Pearson Curve Type 2
Alpha level = 0.10 Exact Perc. Pt. = 0.324593
A 0.32454 0.32768 0.32726
v 0.00033 0.00025 0.00024
B -0.00005 0.00309 0.00267
M 0.00033 0.00026 0.00025

A = Average; V = Variance; B = Bias; M = M.S.E.
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Monte Carlo Pearson Curve Type 1 Pearson Curve Type 2

Alpha level = 0.050 Exact Perc. Pt. = 0.832555

A 0.83302 0.83106 0.82760
v 0.00031 0.00028 0.00027
B 0.00046 -0.00149 -0.00495
M 0.00031 0.00028 0.00030
Alpha level = 0.90 Exact Perc. Pt. = 1,517427

A 1.52723 1.52818 1.53567
\Y 0.00090 0.00066 0.00052
B 0.00980 0.01075 0.01824
M 0.00100 0.00078 0.00085
Alpha level = 0.99 Exact Perc. Pt. = 2.145966

A 2.15864 2.15196 2.14043
\Y 0.00506 0.00241 0.00260
B 0.01268 0.00600 -0.00554
M 0.00523 0.00245 0.00263

Table 4

Comparison of estimates of percentage points (see Table 3). True
distributions: sum of weighted chi-squares.

Part 1. n ~ 100.

Monte Carlo Pearson Curve Type 1 Pearson Curve Type 2

Alpha level = 0.10 Exact Perc. Pt. = 0,342

A 0.34954 G.36148 0.32372
\ 0.00170 0.00196 0.00154
B 0.00754 0.01948 -0.01828
M 0.00176 0.00234 0.00188

Alpha level = 0.50 Exact Perc. Pt. = 0.862

A 0.86908 0.83069 0.86897
\Y 0.00382 0.00426 0.00298
B 0.00708 -0.03131 0.00697
M 0.00388 0.00524 0.00303

A = Average; V =~ Variance; B = Bias; M = M.S.E.
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Monte Carlo

Alpha level

X <>
OO Or

Alpha level

T o< >
OO O W

= 0.90

.90994
.04637
.07894
.05260

= 0.99

.59271
.65287
.50571
.90861

Part 2. n = 1000.

Alpha level

o<y
OO OO0

Alphe Level

OO OO

Alpha level

o R ST S
(ol oo

Alpha level

Xy
QO OoOWw

A = Average,

- 0.10

.34527
.00018
.00327
.00019

= 0.50

.86873
.00057
.00673
.00062

= 0.90

.85648
.00325
.02548
.00390

- 0.99

.12492
.02997
.03792
.03141

Pearson Curve Type 1

Pearson

Curve Type 2

Exact Perc. Pt. = 1,

.90516
.02837
.07416
.03387

O O Omr

Exact Perc. Pt. = 3.

.12139
.19780
.03439
.19898

OO O0OWw

Exact Perc. Pt.

.34522
.00016
.00322
.00017

[eNeNe N

Exact Perc. Pt.

0.86074
0.00057
-0.00126
0.00057

Exact Perc. Pt.

.86264
.00241
.03164
.00341

OO O

Exact Perc. Pt.

3.08379
0.01909
-0.00321
0.01910

V = Variance; B = Bias;
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